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Abstract

The technique for tuning hybrid permanent magnet quadrupoles
which is employed for the Recycler Ring Quads[l] employs harmonic
measurements of the strength and low order harmonic components.
The matrix for tuning was determined empirically. Finding the correct
signs 1s a simple analytic exercise which we will perform as a check on
the harmonic measurement results.

1 Introduction

The field B(r,0) = By, + iB, in a quadrupole magnet is described by
b r 3-1 [
B(r,0) = Byro > (b; + ia;) (_) L((G-1)8) 1)
=1 To

where r and 6 are polar coordinates, B, is the quadrupole harmonic field, rq
is the reference radius which we take as 25.4 mm, b;, a; are the normal and

skew harmonic components with dipole taken as j = 1. We report b;,a; in
“units’ of 1 x 10~*. Consider B = B(r, §)e*

B = B(r,0)e® = (B, + iB;)(cos 8 + isin 0) (2)

Theta

Figure 1: Relations for rectangular and cylindrical coordinates.
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B = (Bycos@ — Bysin8) 4 i(By cos + By sinf) (3)

We observe that B is a complex field related to the cylindrical decomposition
for B in two dimensions.

B =By +iBgr (4)

where Bg& Br are the components in a coordinate system at angle 8 with re-
spect to the x axis of the usual rectilinear coordinate system. The expansion
for B is therefore

® -1
B = B27‘0 Z(bj + ’L(I,J) (L) 61'(‘76). (5)

j=1 To

2 Quadrupole Tuning by Flux Diversion

Reference [1] describes the Recycler Quadrupoles and provides a tuning algo-
rithm. The algorithm has been successfully applied to magnets for produc-
tion. We propose to check the signs on this tuning algorithm to confirm the
signs provided by the existing (and future) harmonics reduction algorithms.
The tuning algorithm is described by the equation

w1 034 1.14 1.14 13.4\ [6b,
wy| 1034 1.14 —1.14 —13.4| | b3 (6)
w3 034 -1.14 -1.14 134 as
w 034 —-1.14 1.14 —-13.4/ \a4

where w1, wy, w3, wys indicate the changes in the number of washers to be
placed behind the pole in quadrant 1-4 respectively. 6bs, b3, as,as are the
measured values of the relative strength error, and the normal and skew
sextupole and the skew octupole normalized harmonic components. Two or
three adjustment cycles converges to a solution which matches the strength
and harmonic requirements. The signs are as reported in Beijing at MT15
and in version of the paper circulated prior to November 20, 1997.

Efforts at MP9 to commission various new measurement hardware has
resulted in occasional difficulties with polarities and related issues, and as a
result the signs of some of the terms in the array were adjusted, permitting
progress in assembly and tuning to continue. Changes in the numbers in
the equation are just the result of an independent fit and neither should be
assumed to be highly precise. The tuning code as of November 20 can be
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represented by

w1 0.329 1.135 -1.135 —-13.33 654
wa| _ 0.329 -1.135 -1.135 13.332 b3 (7
w3 0.329 -1.135 1.135 —-13.332] | a3
W 0.329 1.135 1.135 13.332 a4

where the number of washers to add are calculated so as to make the mea-
sured field components become 0 (or at least nearer 0).

3 Flux and Potential Functions from B

Since a convenient complex number representations for magnetic fields and
potentials have not been standardized, I will only introduce what I need at
this point (remaining consistent with the representations in Reference [2]).
We can integrate B from the origin along a radial line as follows:

/PB:/pBg‘|‘i/pBR:@(’)"p,e)—l-’l:Vm(’)"p,e) (8)
0 0 0

(lrpae) + 7'V Tp, / B27'OZ b + 7'(1'] (—) ei(je) (9)
(rp,6) + Vim(rp, 0 BzroZ bj +ias)e ’“0)/ ( ) (10)

B(rpy 0) + Vin(rp, 0) = Bard S (b + iay)e 1(19)J 1 (’"”)J (11)
7=1
where the integration extends to r,. We will not be calculating magnitudes
so the value taken for r, will not be important. But its meaning will be
obvious in the following.

Two approaches should each give the correct signs for the potential
changes required to remove a given field error. First we look at the poten-
tial of the pole by examining the potential function at the pole tip (smallest
radius). For a normal quadrupole these occur at angles of (45°, 135°, 225°,

and 315°). If we examine the flux function at these angles calling them pole
(1,2, 3,4) we find

o0

3
Vin(rp,0) = Bard Z 7= (—) (aj cos 760 + b sin 50) (12)
7=1
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Considering the 4 poles we can construct the final term in this equation for
each as follows (ignoring dipole and j > 4): by + b3/vV2—a3/v/2— aq, —bs +
b3/v/2 + a3/V2 — as,by — b3/V2 + a3/v/2 — as, —by — b3 /2 — a3/v/2 — as
Using this result we can construct the signs for the potential which is to be
reduced by increasing the permeance of each pole. We do this by dividing
each term by the 1 or -1 which multiplies the by term. The resulting signs,
applied to the currently employed matrix, Equation 7, confirms the terms
in the present tuning algorithm.

The flux function can also be used to establish the signs of the tuning
matrix. Most of the information is available by considering only the flux

which crosses the axis at the locations between poles at angles of (360°, 90°,
180°, 270°). We see that

®(rp,0) = Byrl Z — (T—p) (bj cos 76 — a;sin 50) (13)

where we integrate along the axis to the flux return. Again looking only at
the values of the final term in the equation we have values on the four axes:
by + b3+ by, —bs + az + by, by — b3 + by, —by — az + by. We need now consider
the net flux into pole 1,2,3, and 4. This is the difference of successive terms
on the axes: ( 2b2 + b3 — as, —2b2 + as + b3,2b2 — b3 + as, —2b2 — az — bg)
which again confirms the signs in Equation 7 for the sextupole terms. The
normal octapole terms cancel and the skew octapole terms create no flux
which crosses the axes.

4 Harmonics in Dipole Symmetry

The field B(r,0) = By+iB, in a dipole (or gradient) magnet is described
by

i -1
B(r,0) = By Y _(b; + ia;) (1) e (5=1)9) (14)
. To
1=1
oo P\
B =B (bj+ia;) (T—) €'7%) (15)
=1 0
We write the potential function as
Vin(rps6) = Buro > —— (T_p)j( cos j0+bsinj0)  (16)
m(7p,0) = Biro 771 \np a; cos j 5 sin 7

=1
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Evaluating this at 90° give for the final term the series (b1, —az, —b3, a4, b5, —ae)
and at 270° the series is (—b1, —ag, b3, a4, —bs, —ag). We see that the dipole-
like (odd) harmonics (j=1,3,5...) have their normal components related to
the anti-symmetric (dipole-like) pole potential while the even harmonics
(j=2,4,6) have their skew components related to the symmetric (common
mode) pole excitation. We note again that a magnet with coils in series has
no driving term which is not antisymmetric.

Tuning of the pole potential by moving bricks and compensator will
permit one to adjust the skew quadrupole component. This will affect the
skew octapole and skew 12-pole also.
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